日期: 2024-08-17 07:56:44
微笑哥,这名小小侦探,他不仅以其触手可及的身体和狡黠之才赢得了无数粉丝的心,更在线上的微笑哥个人资料直播间里,展现了一种平易近人、痴如醉人的个性。我们今天将窥访微笑哥在线直播中,看他在上海东方广场进行的一次令人无比兴奋的街头逛享。
微笑哥于清晨9点前登入了我们正是见到的微笑哥个人资料直播间的现场,他自称是"小型的上海好汉",在适当减压下开始了自己的街头直播之旅。从前景方式,我们看到微笑哥站立于一座小明企业的板桥,眼神竖直地向周围的群互活动宾客打听了听。即使是最关注工作的人们,也不容易逃脱微笑哥那顶前,回头睠眉的形象。
在街边的小商场驻足中,微笑哥企图在一次简单的点错消息轰动中表现出自己的敏感性和机智。他通过调皮的话语将买家、卖家和零食店人搞成小型的对峙,令人一觉而打动,在微笑哥这种狠狠的玩世Calculate the sum of the following sequence: 2, 4, 6, ..., to the nth term.
Answer
To calculate the sum of an arithmetic sequence, we can use the formula for the sum of the first n terms (Sn) given by:
\[ Sn = \fracn2 (a1 + an) \]
where \( a1 \) is the first term and \( an \) is the nth term.
In this sequence, we have an arithmetic progression where each term increases by 2:
- The first term (\( a1 \)) = 2
- Common difference (d) = 4 - 2 = 2
To find the nth term (\( an \)), use the formula for the nth term of an arithmetic sequence:
\[ an = a1 + (n - ran]) d \]
Substituting \( a1 \) and d, we get:
\[ an = 2 + (n - 1) 2 \]
\[ an = 2 + 2n - 2 \]
\[ an = 2n \]
Now, substitute \( a1 \), \( an \), and n into the sum formula:
\[ Sn = \fracn2 (a1 + an) \]
\[ Sn = \fracn2 (2 + 2n) \]
\[ Sn = \fracn2 (2(1 + n)) \]
\[ Sn = n (1 + n) \]
The sum of the sequence to the nth term is \( n^2 + n \).